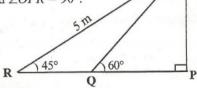
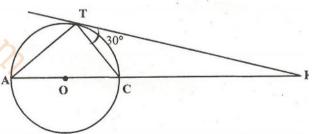


- (b) The *n*th term of a sequence is $5 + \frac{2}{3^{n-2}}$ for $n \ge 1$. What is the sum of the fourth and fifth terms? Leave your answers in the form $\frac{x}{y}$ where x and y are integers.
- 2. (a) Factorize $x^2 + 4x + 3 + mx + 3m$.
 - (b) A T-shirt costs 5 times as much as a singlet. for GH¢800, a trader can buy 32 more singlets than T-shirts. How much does a T-shirt cost?
- 3. The diagram shows a field *ABCD* in the form of a trapezium. If |AD| = |BC| = 600 m, $\angle ADC = \angle BCD = 120^{\circ}$ and |DC| = 450 m,
 - (a) find the perimeter of the field;
 - (b) calculate, correct to **three** significant figures, the area of the field.



NOT DRAWN TO SCALE

4. (a)


In the diagram, |OR| = 5 m, $\angle ORP = 45^{\circ}$, $\angle OQP = 60^{\circ}$ and $\angle OPR = 90^{\circ}$. Find the distance QP, leaving your answer in surd form.

NOT DRAWN TO SCALE

- (b) X and Y are two cylindrical tanks with base radii 2r cm and r cm respectively. If the water level in Y is 10 cm, what level will the same quantity of water be in X? (Use $\pi = \frac{22}{7}$)
- 5. (a) In a class, the probability that a student passes a test is $\frac{2}{5}$. What is the probability that if 2 students are chosen at random from the class, one would pass and the other would fail?

(b) In the diagram, O is the centre of the circle. AK is a strailght line and TK is a tangent. If $\angle CTK = 30^{\circ}$, calculate $\angle TKC$.

Part II [60 marks]

Answer five questions only from this part. All questions carry equal marks.

- 6. (a) In a class of 31 students, 16 play football, 12 play table-tennis and 5 play both games. Find the number of students who play
 - (i) at least one of the games;
 - (ii) none of the games.
- (b) Two commodities A and B cost D70 and D80 per kg respectively. If 34.5 kg of A is mixed with 26 kg of B and the mixture is sold at D85 per kg, calculate the percentage profit.

7. (a) Copy and complete the following table of values for the relation y = (x-4)(x+2) for $-3 \le x \le 5$.

x	-3	-2	-1	0	1	2	3	4	5
y	F		-	-8					

- (b) Using scales of 2 cm to 1 unit on the x-axis and 2 cm to 2 units on the y-axis, draw the graph of y = (x 4)(x + 2) for $-3 \le x \le 5$.
- (c) Using the graph, find the:
 - (i) values of x for which y is decreasing;
 - (ii) gradient of the curve at x = 0.
- 8. (a) Using a ruler and a pair of compasses only, construct:
 - (i) triangle PQR such that |PQ| = 8.5 cm, $\angle QPR = 60^{\circ}$ and |PR| = 7.5 cm;
 - (ii) the locus l_1 of points equidistant from P and R;
 - (iii) the locus l_2 of points equidistant from Q and R;
 - (iv) locate the point of intersetion I, of the loci l_1 and l_2 .
 - (b) (i) Construct a circle passing through the three vertices of the triangle PQR.
 - (ii) Find the radius of the circle.
 - (iii) Measure |QR|.
- 9. (a) Simplify $\sqrt{\left(\frac{x^3y^5}{xy^7}\right)}$, where x > 0 and y > 0.
 - (b) A man 1.7 m tall observes the angle of elevation of the tip of a tower to be 35°. He moves 50 m away from the tower and now observes the angle of elevation to be 28°. How far above the ground is the tip of the tower to **three** significant figures?
- 10. The table shows the distribution of marks scored by 50 students in a test.

Marks (%)	1-10	11 – 20	21 – 30	31 - 40	41 – 50	51 – 60	61 – 70	71 - 80	81-90
Frequency	1	3	5	8	12	10	5	4	2

- (a) Construct a cumulative frequency table for the distribution.
- (b) Draw a cumulative frequency curve for the distribution.
- (c) Use the curve to estimate the:
 - (i) interquartile range;
 - (ii) percentage of students who scored more than 66%.
- 11. The base of a right pyramid with vertex O is a square ABCD of side 13 cm. Each slant edge is 12 cm long. Calculate, correct to **two** significant figures, the:
 - (a) vertical height |OE| of the pyramid;
 - (b) volume of the pyramid.
- 12. (a) The operation (\bullet) is defined on the set $\{2, 4, 6\}$ by $m \bullet n =$ the unit digit in the product mn.
 - (i) Copy and complete the table.

2	4	6
4	8	2
	6	
-	0	+

- (α) $x \cdot 4 = 8$;
- (β) $e \cdot e = e$;
- $(\gamma) \qquad (4 \bullet f) \bullet 4 = f.$
- (b) The functions f and g are defined as $f: x \to 2 x^2$ and $g: x \to \frac{1}{x-1}$.

(ii)

Evaluate

- (i) $g(-\frac{1}{4})$:
- (ii) $\frac{f(2)}{g(3)}$
- 13. (a) A triangle has vertices A(1, 1), B(2, 4) and C(5, 8).
 - (i) If the triangle is translated by the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ to A'B'C', where $A \to A'$, $B \to B'$ and $C \to C'$, calculate the coordinates of A', B' and C'.
 - (ii) The triangle ABC undergoes a transformation involving rotation in an anticlockwise direction through 90° about the origin followed by a translation. If the final position is A''(2,-1), B''(-1,0) and C''(-5,3), determine the translation vector.
 - (b) In triangle \overrightarrow{PQR} , $\overrightarrow{PQ} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ and $\overrightarrow{RQ} = \begin{pmatrix} -6 \\ -4 \end{pmatrix}$, find \overrightarrow{PR} .
 - (c) Find the equation of the line which is perpendicular to the line y = 2x 1 and passes through the point (2, 5).

QUESTIONS 14 AND 15 ARE FOR CANDIDATES IN NIGERIA, SIERRA LEONE AND THE GAMBIA ONLY.

- 14. P(lat 40° N, long 18° W) and Q(lat 40° N, long 78° W) are two cities on the surface of the earth. Calculate the:
 - (a) radius of the parallel of latitude on which P and Q lie, correct to the nearest 10 km;
 - (b) length of the minor arc PQ, correct to the nearest 100 km;
 - (c) vertical distance between the centre of the earth and the centre of the small circle on which P and Q lie, correct to the nearest km.

[Take $\pi = \frac{22}{7}$ and radius of the earth = 6400 km]

- 15. (a) The second, fourth and sixth terms of an Arithmetic Progression (AP) are x 1, x + 1 and 7 respectively. Find the
 - (i) common difference;
 - (ii) first term;
 - (iii) value of x.
 - (b) A spherical bowl of radius r cm is one-quarter full when 6 litres of water is poured into it. Calculate, correct to **three** significant figures, its diameter. [Take $\pi = \frac{22}{7}$].

END OF PAPER