BEST BRAIN EXAMINATIONS KONSORTIUM

SPECIAL PRIVATE MOCK FOR BECE CANDIDATES- APRIL 2022

MARKING SCHEME - MATHEMATICS

PAPER 2 [60 MARKS]

GENERAL NOTES ON PAPER II

1. Marks are subdivided into marks for method (M), for accuracy (A) and for accuracy not preceded by Mark (B).
2. The M marks should be given for a particular stage if the method is correct, that is, it would yield the right answer, if correctly carried out without numerical errors. M marks are not generally subdivided and unless the M mark for a preceding stage has been awarded, no A marks can be gained for that stage. (No deduction should be made from M marks).
3. Deduct 1 mark for omission of units or for wrong units not more than once in one whole question.
4. Give ' 0 ' (zero) for results obtained for work that is indecipherable or wholly suppressed.
5. If more questions are attempted than the rubric allows, delete the marks given for these extra questions which have the lowest marks. This rule implies that for candidates attempting more than four questions, consider only their best four and ignore the remaining questions by writing "MQA". (MQA denotes More Questions Answered than allowed by rubrics)
6. Do not mark beyond the first appearance of a correct answer, i.e. ignore any further work beyond the correct answer

QUESTION ONE

(a) $\quad \mathrm{P}=\{2,3,5,7,11,13,17,19\}$
$\mathrm{Q}=\{1,3,5,7,9\}$
(i) $\mathrm{P} \cap \mathrm{Q}=\{3,5,7\}$
(ii) $\mathrm{P} \cup \mathrm{Q}=\{1,2,3,5,7,9,11,13,17,19\}$
(iii) $\mathrm{P} \cap \mathrm{Q}^{1}=\{2,11,13,17,19\}$
(b) Given Number of pupils who like reading Novels but not Comics $=20$

Number of pupils who like reading Comics but not Novels $=25$
Number of pupils who like reading neither Comics nor Novels $=5$
Let $U=$ Universal set of all pupils
$C=$ number of pupils who like reading comics
$N=$ number of pupils who like reading novels
$x=$ number of pupils who like reading both novels and comics
(i)

(ii) For the value of x

$$
\begin{aligned}
20+x+25+5 & =60 \\
20+25+5+x & =60 \\
50+x & =60 \\
x & =60 \\
x & =60-50 \\
x & =10
\end{aligned}
$$

Both Novels and Comics = $\mathbf{1 0}$ pupils
(iii) $\mathrm{C}=x+25$

$$
\begin{aligned}
& =10+25 \\
& =\mathbf{3 5} \text { pupils }
\end{aligned}
$$

:. 35 pupils like reading Comics
(iv)

$$
\begin{aligned}
N & =x+20 \\
& =10+20 \\
& =\mathbf{3 0} \text { pupils }
\end{aligned}
$$

:. 30 pupils like reading Novels

Cost price $\rightarrow 100 \%=\mathrm{GH} \not \subset 600,000$
M $\frac{1}{2}$
Selling price $\rightarrow 120 \%=$?

$$
\begin{aligned}
& =\frac{120}{10} \times \mathrm{GH} \Phi 600,000 \\
& =\mathrm{GH} \Varangle 720,000
\end{aligned} \quad \begin{aligned}
& \\
& \begin{array}{l}
\text { alternatively } \\
S P
\end{array}=\text { CP }+ \text { Profit } \\
& =600,000+\left(\frac{20}{100} \times 600000\right) \\
& =\mathbf{6 0 0 , 0 0 0}+\mathbf{1 2 0 , 0 0 0}) \\
& =G H \Varangle \mathbf{7 2 0}, \mathbf{0 0 0}
\end{aligned}
$$

$$
\mathbf{M}_{\frac{1}{2}}^{1}
$$

(ii) $\mathrm{VAT}=5 \frac{1}{2} \%$ of selling price

$$
\begin{aligned}
& =\frac{11}{200} \times \mathrm{GH} \ddagger 720,000 \\
& =11 \times \mathrm{GH} \nmid 3600 \\
& =\mathrm{GH} \nmid 39,600
\end{aligned}
$$

New selling price after the introduction of 5.5% VAT on selling price, maintaining the same profit
$=$ VAT + Old Selling Price
$=39600+720000$
= Ghc 759600
(d) Translation vector $=$ Image - Point
$=\binom{3}{-2}-\binom{2}{5}$
\mathbf{M}_{2}^{1}
$=\binom{3-2}{-2-5}$
Translation vector $=\binom{1}{-7}$

QUESTION TWO

(a)

$$
\begin{aligned}
\text { Scale factor } & =\frac{\text { length in the image }}{\text { length in the object }} \\
& =\frac{\left|O A_{1}\right|}{|O A|} \\
& =\frac{3 c m}{2 c m} \\
& =1.5 \mathrm{~cm}
\end{aligned}
$$

M1
(b) VAT paid $=$ GH $\not \subset 100$

VAT rate $=121 / 2 \%=12.5 \%$
VAT Exclusive cost rate $=100 \%$
VAT Exclusive cost $=\frac{100 \%}{12.5 \%} \times \mathrm{GH} ¢ 100.00$

$$
\begin{aligned}
& =\frac{100}{12.5} \times \mathrm{GH} \phi 100.00 \\
& =\frac{\mathrm{GH} \phi 10000}{12.5}
\end{aligned}
$$

VAT Exclusive Cost $=$ GH $\not \subset 800.00$
\therefore The VAT Exclusive cost of the items is GH $\not \subset 800.00$

alternatively

Given VAT paid $=$ Ghc 100
$V A T \%=12.5$
Let Cost of items, excluding VAT $=\mathrm{CP}$
$=>\mathrm{VAT} \%=\frac{V A T}{C P} \times 100$
$12.5=\frac{100}{C P} \times 100$
$12.5 \times C P=10000$
$C P=\frac{10000}{12.5}$
$=800$
:. Excluding VAT, the items cost Ghc 800
(c) Percentage gain $=\frac{\text { Selling price-Cost price }}{\text { Cost price }} \times 100 \%$

$$
\begin{aligned}
& =\frac{G H ¢ 65,000-G H ¢ 55,000}{G H ¢ 55,000} \times 100 \% \\
& =\frac{G H ¢ 10,000}{G H ¢ 55,000} \times 100 \%
\end{aligned}
$$

Percentage gain $=18.18 \%$
(d) (i) Scale Factor $(\mathrm{k})=\frac{\text { image length }}{\text { object length }}$

$$
\begin{aligned}
& =\frac{\left|O Y^{1}\right|}{|O Y|} \\
& =\frac{10 \mathrm{~cm}}{6 \mathrm{~cm}} \\
\mathrm{k} & =\frac{5}{3}
\end{aligned}
$$

\therefore The scale factor of the enlargement is $=\frac{5}{3}$ or 1.67

$$
\left|O X^{1}\right|=\underset{5}{K} \times O X
$$

$$
=\frac{5}{3} \times 4 \mathrm{~cm} \quad \mathbf{M 1}
$$

$$
=\frac{20 \mathrm{~cm}}{3} \quad \mathbf{M} 1
$$

$$
=6.67 \mathrm{~cm}
$$

QUESTION THREE

(a) (i)	$\underline{\text { Stem }}$	Leaf
	0	6,8
	1	$0,2,8$
	2	$2,6,7$
	3	$1,6,7,9$
	4	$2,3,4,7,8$
	5	$3,5,9$

(ii) $\mathrm{P}($ Student scored between 40 and 50)

$$
=\frac{5}{20}
$$

$$
=\frac{1}{4}
$$

(accept 0.25 or 25%)
(iii) n (students who passed) $=4+5+3$

$$
=12
$$

(b) \quad Mean $=\frac{\Sigma x}{n}$

$$
9=\frac{8+11+8+19+6+7+3 x+11+11}{9}
$$

$$
9 \times 9=8+11+8+19+6+7+11+11+3 x
$$

Stem:

M1 (any 2 correct)
A1 (all correct)
Leaf:
M1 (any line correct)
(Ignore order)
A2 $-\frac{1}{2}$ ee (ignore commas)
M1
A1

M1 (at least 2 terms)
A1 (accept jumping)

$$
\begin{aligned}
81 & =81+3 x \\
81-81 & =3 x \\
\frac{0}{3} & =\frac{3 x}{3} \\
0 & =x
\end{aligned}
$$

$$
\therefore x=0
$$

(c) (i)

$$
\begin{aligned}
& \mathrm{X}=\{\{2,3,5,7,11\} \\
& \mathrm{Y}=\{1,3,5,7,9,11\}
\end{aligned}
$$

(ii) $\quad \mathrm{X} \cap \mathrm{Y}=\{3,5,7,11\}$
(iii) $\mathrm{X} \cup \mathrm{Y}=\{1,2,3,5,7,9,11\}$
(d) Object Length $=\frac{\text { Image length }}{k}$

$$
\begin{array}{rlrl}
|\mathrm{AD}| & =\frac{\mid A^{1} D^{1}}{k} & \\
& =\frac{12 c \mathrm{~cm}}{1 / 4} & & \\
& & 12 \mathrm{~cm} \times 4 & \\
|\mathrm{AD}| & =48 \mathrm{~cm} & & \mathbf{A}^{1} / 2
\end{array}
$$

QUESTION FOUR

(a) (i)

$$
\mathrm{U}=100
$$

$$
\begin{array}{lc}
(88-x)+x+(76-x)=100 & \mathbf{M} 1 / 2 \\
88+76-x=100 & \\
164-x=100 & \mathbf{M} 1 / 2 \\
x=100-164 & \mathbf{A}^{1} / 2
\end{array}
$$

$$
\mathrm{U}=100
$$

(ii) Percentage of persons who passed exactly one subject
$=24+12$
$\mathbf{M}^{1 / 2}$
$=36$
$\mathbf{A}^{1 / 2}$
Probability that a person chosen at random passed exactly one subject

$$
=36 \%=9 / 25
$$

(b) (i) Gross income $=\mathrm{GH} \not \subset 120,000.00$

His tax free allowance $=\mathrm{GH} \not \subset 1,500.00$
Income tax rate $=15 \%$

Taxable income $=$ Gross income - Tax Free allowance

Taxable income $=\mathrm{GH} \notin 120,000.00-\mathrm{GH} \notin 1,500.00$

$$
=\mathrm{GH} \not \subset 118,500.00
$$

\mathbf{M}_{2}^{1}
A $\frac{1}{2}$

Income Tax $=$ Tax rate \times Taxable income

$$
\begin{aligned}
& =\frac{15}{100} \times \mathrm{GH} \phi 118,500.00 \\
& =15 \times \mathrm{GH} \phi 118,500.00
\end{aligned}
$$

Income tax $=$ GH $\not \subset 17,775.00$
\therefore He is liable to $\mathrm{GH} \not \subset 17,775.00$ tax payment
(c) \quad Cost Price $=\mathrm{GH} \not \subset 125.00$

Profit $=30 \%$
Selling price $(\mathrm{S} . \mathrm{P})=\frac{100+P \%}{100 \%} \times$ Cost price $(\mathrm{C} . \mathrm{P}) \quad$ B $1 / 2$
$=\frac{100+30}{100} \times \mathrm{GH} \phi 12$
$=\frac{130}{100} \times \mathrm{GH} \not \subset 125.00$
$=\frac{13}{10} \times \mathrm{GH} \not \subset 125.00$
$=\mathrm{GH} \Varangle \frac{1625}{10}$
M1
Selling price (S. P) $=\mathrm{GH} \not \subset 162.50$
$\mathbf{A}^{1 / 2}$

$$
\begin{aligned}
& \frac{\text { alternatively }}{S P=C P+P r o f i t} \\
& =125+\left(\frac{30}{100} \times 125\right) \\
& =\mathbf{1 2 5}+\mathbf{3 7 . 5}) \\
& =G H \not \subset 16 \mathbf{2 . 5 0}
\end{aligned}
$$

(d) $\mathrm{Q} \cup \mathrm{T}=\{1,2,3,4,5,6,7,10,11,12,15\}$

QUESTION FIVE

(a) (i) and (ii) Refer to graph
(iii) $\quad \mathrm{A}(2,1) \quad \mathrm{B}(3,4) \quad \mathrm{C}(4,2)$
(iv) Enlargement under a scale factor 2 from the origin
$(x, \mathrm{y}) \rightarrow \mathrm{k}(x, \mathrm{y})$
$\mathrm{A}(2,1) \rightarrow \mathrm{A}_{1}(2,1)$
B $(3,4) \rightarrow B_{1} 2(3,4)$
$\mathrm{C}(4,2) \rightarrow \mathrm{C}_{1} 2(4,2)$
A $(2,1) \rightarrow \mathrm{A}_{1}(4,2)$
B $(3,4) \rightarrow \mathrm{B}_{1}(6,8)$
$\mathrm{C}(4,2) \rightarrow \mathrm{C}_{1}(8,4)$
$\mathrm{A}_{1}(4,2)$
$\mathrm{B}_{1}(6,8)$
$\mathrm{C}_{1}(8,4)$
(v) Using the \boldsymbol{x}-axis as the mirror line
$(x, y) \rightarrow(x, y)$
$\mathrm{A}(2,1) \rightarrow \mathrm{A}_{2}(2,-1) \quad \mathrm{B}(3,4) \rightarrow \mathrm{B}_{2}(3,-4) \quad \mathrm{C}(4,2) \rightarrow \mathrm{C}_{2}(4,-2)$
$\mathrm{A}_{2}(2,-1)$
$\mathrm{B}_{2}(3,-4)$
$\mathrm{C}_{2}(4,-2)$

Penalties

Wrong/non-labeling of vertices
Non-joining or non use of straight edge
Non-calibration of axes
Non-labelling of axes
(To be fastenea togetner ifactother answers to paper)
Name:
Index Number:

(b) $\mathrm{n}($ STUDENT) (outcome) $=7$
$\mathrm{n}(\mathrm{Ts})=\mathrm{T}, \mathrm{T}=2$
B $1 / 2$
$\mathrm{P}(\mathrm{Ts})=\frac{2}{7}$
(c) Given $P=\{2,3.4 .5 .6\}$

Let $S=$ set of all possible outcomes of selection of two distinct numbers
$n(S)=$ number of elements in S
$=>S=\{(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)\}$
$n(S)=10$
B $1 / 2$
(i) Let $E=$ event that the sum of two numbers is 8
$n(E)=$ number of elements in E
$E=\{(2,6),(3,5)\}$
$n(E)=2$
Probability that the sum of the two numbers is, $P(E)=\frac{n(E)}{n(S)}$
$=\frac{2}{10}=1 / 5$
(ii) Let $E=$ event that one of the two numbers selected is a factor of the other
$=>E=\{(2,4),(2,6),(3,6)\}$
$n(E)=3$
Probability that one of the two numbers selected is a factor of the other

$$
\begin{aligned}
& P(E)=\frac{n(E)}{n(S)} \\
& P(E)=3 / 10
\end{aligned}
$$

TOTAL $=15$ MARKS

QUESTION SIX

(a) Total number of People $=12+18+25+20+15=90$

Angle of a sector $=\frac{\text { category value }}{\text { total category }} \times 360^{\circ}$
B $\frac{1}{2}$

Ghanaian Language	Number of People	Angle of a sector
Akuapem Twi	12	$\frac{12}{90} \times 360^{\circ}=48^{\circ}$
Fante	18	$\frac{18}{90} \times 360^{\circ}=72^{\circ}$
Ewe	25	$\frac{25}{90} \times 360^{\circ}=100^{\circ}$
Nzema	20	$\frac{20}{90} \times 360^{\circ}=80^{\circ}$
Ga	15	$\frac{15}{90} \times 360^{\circ}=60^{\circ}$
TOTAL	$\mathbf{9 0}$	$\mathbf{3 6 0}^{\circ}$

Title: A pie chart showing the distribution of people who speak some Ghanaian Languages

(ii) Probability of selecting a person who speaks $\mathrm{Ga}=\frac{n(G a)}{n(S)}$

$$
\begin{array}{ll}
=\frac{15}{90} & \text { M1 } \\
=\frac{1}{6} & \text { A1 } \\
& \text { B1 }
\end{array}
$$

(iii) The Modal Ghanaian Language is Ewe.
(b) $\mathrm{S}(-5,-3\}$
(i) 270° clockwise $\Rightarrow(-y, x)$

$$
S(-5,-3) \quad \Rightarrow S_{1}(3,-5)
$$

(ii) $180^{\circ} \Rightarrow(-x,-y)$

$$
S(-5,-3) \Rightarrow S_{1}(5,3)
$$

(iii) 90° clockwise $\Rightarrow(y,-x)$

$$
S(-5,-3) \Rightarrow(-3,5)
$$

k which represents $|\mathrm{LQ}|$

$$
\begin{aligned}
& \mathrm{k}=\text { scale factor } \times|D E| \\
& \mathrm{k}=6 \times 2 \mathrm{~cm} \\
& \mathrm{k}=12 \mathrm{~cm}
\end{aligned}
$$

(d) Monthly income $=\mathrm{GH} \nmid 3,600.00$

Tax - free allowance $=\mathrm{GH} \nmid 350.00$
Taxable income $=$ Monthly income - Tax free allowance M1

$$
=\mathrm{GH} \nless 3,600.00-\mathrm{GH} \nmid 350.00
$$

Taxable income $=\mathrm{GH} \not \subset 3,250.00$
A1

TOTAL $=15$ MARKS

PAPER 1 [40 MARKS]

1. B
2. \mathbf{C}
3. B
4. B
5. A
6. B
7. \mathbf{A}
8. D
9. \mathbf{A}
10. B
11. A
12. B
13. C
14. D
15. A
16. A
17. D
18. B
19. A
20. D
21. D
22. C
23. D
24. A
25. A
26. B
27. C
28. B
29. C
30. D
31. D
32. A
33. A
34. C
35. D
36. A
37. D
38. D
39. D
40. A
